
Journal of Management & 
Entrepreneurship 

ISSN 2229-5348 

UGC Care Group I Journal 

Vol-10 Issue-02 Nov 2021 

 

 
 
 

199 
 

On Frink’s Type Metrization of Weighted Graphs 
 

T C VENKATA SIVA, V NIRANJAN REDDY, K JAGAN MOHAN,  

ASSISTANT PROFESSOR 1,2,3  

TCSIVA@SVITATP.AC.IN, anjanreddymsc@gmail.com, mohan.kjagan56@gmail.com 

department of Mathematics, Sri Venkateswara Institute of Technology, 

N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722 
 

Abstract 
In this note, we present, test, and compare an explicit 
approach to generate a metric d(x, y) between the 
vertices x and y of an affinity weighted undirected 
graph using the method of the metrization theorem of 
uniformities with countable bases. 
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• Introduction 
One area of current interest in data analysis is the 
development of metrics in data sets. It goes without 
saying that the metrics constructed from a particular 
data collection should quantitatively represent the 
affinities between the various data pieces.  The search 
for such metric structures on data sets is motivated by 
various factors. Specifically, appropriate metrics offer 
concepts of the vicinity of a given location that are not 
directly offered by the affinity a priori. More significant, 
though, is the fact that covering and partitioning may be 
done with metric spaces and that many of the 
characteristics of Euclidean spaces remain true. 
 
a metric control that makes sense in every situation.   
Data structure metrization is important and has been 
mentioned in several of the seminal works on learning 
and data analysis, including [1, 2, 3, 4, and 5]. 
Diffusive metrics, developed by Coifman and Laffon [5], 
are arguably the most well-known metrization 
technique. The affinity matrix between the data is used 
to build a Laplace type operator. Then, the spectral 
analysis of this operator yields a diffusion kernel that 
provides a variety of metrics on the data set at various 
moments. A high dimensional space can be 
approximated by a low dimensional space by identifying 
its key properties according to the size of the 
eigenvalues. The metrization of general topological 
spaces is a well-known and ancient issue in pure 
mathematics. Specifically, when the uniform structure 
has a countable basis, the metrization of the topology 
generated on a set X by a uniformity on X × X was taken 
into consideration and solved in [6], see also [7] and [8]. 
As a result, if and only if the uniformity has a countable 
basis, a topology generated by a uniform structure is 
metrizable. Despite the fact that the results appear to 
have a qualitative nature, they are supported by a 
quantitative lemma by Frink that makes it possible to 
derive a metric from the affinity by passing through the 

uniform structure that the affinity between the data 
points has created. 
This quantitative lemma is originally used by Macias and 
Segovia ([9]) to demonstrate the equivalence of quasi-
distances and powers of metrics. In [10], a Newton type 
potential form for a universal affinity kernel K on an 
abstract set X is obtained by providing sufficient 
conditions on K in terms of a natural metric on X. In 
general, [10] indicates that, under the assumption of 
quantitative transitivity, we have that K(x, y) = φ(d(x, y)) 
for a quasi-convex decreasing function φ defined on the 
positive real numbers and some "metric" d. 
In order to obtain a metric type function d(x, y) between 
the vertices x and y associated with an affinity weighted 
network, we explicitly provide, test, and compare an 
approach in this note. In fact, the method produces a 
homogeneous family of metrics that collectively yield a 
sufficiently abundant family of balls. 
The major result as a consequence of Frink's Lemma, as 
stated and proved in [8], is the focus of the second 
section of this note. The algorithm for the case of finite X 
is described in Section 3. We test and compare the 
technique in a few unique weighted graphs in Section 4. 
 

Pseudometrization of Affinity 

Kernels and Weighted 

Undirected Graphs Through 

Frink’s Lemma 
 

The core theory requires no assumption on 
cardinality, even when the problem is 
motivated by the finite setting offered by 
weighted graphs. Therefore, we will assume in 
this section that X is a set and K: X × X → [0, ∞) 
is a nonnegative function such that K(x, y) is a 
measure of affinity between x and y for x and y 
in X. 

 

A function d: X × X → [0, ∞) such that (p-m.1) 
d(x, x) = 0 for every x ∈ X; (p-m.2) d(x, y) = d(y, 
x), x, y ∈ X; and (p-m.3) d(x, z) < d(x, y) + d(y, z) 
for every x, y, and z ∈ X are examples of a 
pseudo-metric on the set X. 

A metric that has d(x, y) = 0 only when x = y is 
called a pseudo-metric. 

Now, let us state Frink's Lemma as it is 
presented in Kelley's book [8], namely in 
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Chapter 6. It's necessary to make some 
notations to make more statements simpler. 

We indicate the diagonal of X × X with △. 

Stated otherwise, △ = {(x, x): x ∈ X}. To 
represent the set {(x, y) ∈ X × X: (y, x) ∈ U }, 
given a subset U of X × X, we write U −1. If U = 
U −1, then we say that U is symmetric.  The 
composition of X × X, given two subsets U and 
V, is defined as V ≦ U = {(x, z) ∈ X × X: there 
exist y ∈ X such that (x, y) ∈ U and (y, z) ∈ V }. 

 

 

Lemma 2.1: Given a set X, specify {Um : m = 0, 
1, 2,...} as a series of subsets of X × X that have 
the given characteristics. 

╖U0 = X × X; ╖Un = Un−1 for each n; ╖△ ⊂ Un 
for each n; ⦁ Un+1 ≦ Un+1 ⋧ Un+1 ⊆ Un for 
each n. 

Then, for each n = 1, 2, 3,..., there is a pseudo-
metric d defined on X. 

 

{(x, y) ∈ X × X: d(x, y) < 2−n} ⊂ Un+1. 

The control that the level sets of the pseudo-
metric d have over the provided sequence {Un : 
n = 0, 1, 2,...} appears to be of a qualitative 
nature. However, this control becomes 
quantitative when the sequence Un is itself 
given by level sets of some function K on X × X, 
which enables the discovery of a natural notion 
of distance supplied by K. 

In the continuation, we will utilise V (n) to 
represent the composition V ⋦ V ⋦ V... ⋦ V n 
times for a given subset V of X × X. 

Now let us demonstrate that it is possible to 
create rising sequences {λ(k): k = 0, 1, 2,...} such 
that, whenever Uk = {K > λ(k)}, Uk+1 ≦ Uk+1 ⊆ 
Uk. This may be done under certain moderate 
conditions in K. Thus, the sequence UK so 
obtained satisfies Lemma 2.1's primary criteria. 

 

Lemma 2.2: Assume X is a set, and K is a 
nonnegative symmetric real function defined 

on X × X such that for every x ∈ X, ⠁K(x, x) = 

supy∈X K(x, y); ⠁0 < Λ∞ = sup{α > 0 : {K > α}(m) 
= X × X for any integer m} ≤ . 

Then, for every Λ such that 0 < Λ < Λ∞, there 
exists a finite sequence 0 = λ(0) < λ(1) \... \ λ(k) 
= Λ such that, for every i = 1, 2,..., k, {K > λ(i)}(3) 
⊆ {K > λ(i − 1)}. Furthermore, for each i = 0, 1, 

2,..., k, △ ⊂ {K > λ(i)}. 

 

Evidence. First, note that the set A = > 0: K > 
(m) = X X for a given integer m is either the 
entire half line R+ or an interval. The 

monotonicity of K's level sets implies this fact. 
Stated differently, if α ∈ A and 0 < β < α, then {K 
> } ⊃ {K > α}, meaning that {K > }(m) ⊃ {K > 
ϱ}(m) = X × X and β ∈ A. However, we have that 

△ ⊂ {K > ϱ} for any α ∈ A. This is inferred from 
the kernel K's attribute a). In actuality, if K(x0, 
x0) < α for some x0 ∈ X, then supy∈X K(x0, y) ≤ 
α, and the point (x0, x0) would belong to {K > ϱ} 
for no m ∈ N. However, since α ∈ A, {K > α}(m) 
= X × X ⊃ {(x0, x0)} for some m. 

We will select 0 < Λ < Λ∞. We know from the 

foregoing comments that Λ ∈ A and △ ⊂ {K > 
Λ}. mΛ = min{m ∈ N: {K > }(m) = X × X} should 
be set.  Stated otherwise, {K > (mΫ) = X × X, but 
{K > (mΫ−1) ; X × X.  We can presume mΛ ≥ 3.  
The set A1 = {α > 0: {K > }(3) ⊆ {K > }} is now 
under consideration. The sequence we are 
searching for contains only two elements, λ(0) 
= 0 and λ(1) = Λ, if A1 = ∅. Furthermore, it holds 
trivially that the required inclusion {K > λ(1)}(3) 
⊆ X × X = {K > λ(0)}.  If Λ1 ∈ A1 and Λ1 > sup A1 
− ε for some fixed as small as required and 
positive ε, then A1~∅.  A2 = {α > 0: {K > \1}(3) ⊆ 
{K > α}} should now be set.  We are done with 
λ(0) = 0, λ(1) = Λ1, and λ(2) = Λ if A2 = ∅. The 
selection process can be repeated by selecting 
λi ∈ Ai = {α > 0: {K > Λi−1}(3) ⊆ {K > α}} with Λi 
> sup Ai − ε.   Since the procedure finishes 
after at most the integer part of m\/3 + one 
iteration for {K > }(mΛ) = X × X, it yields a finite 
sequence of levels Ϋ0:= Λ > Λ1 > Λ2 >... > Ϋk.  
Taking λ(i) = Ϋk−i for i = 0, 1,..., k yields the 
intended outcome. 

 

 

It should be noted that selecting the sequence 
Γi in the above argument for discrete settings or 
continuous kernels K can be achieved by 
calculating the maximum of each Ai. Therefore, 
there's no need for the ε-approximation 
argument. We may declare and demonstrate 
the primary findings of this section using the 
two lemmas mentioned before. 

Theorem 2.3. Let X represent a set. In Lemma 
2.2, let K be a nonnegative symmetric function 
defined on X × X that satisfies a) and b).  Then, 
as stated in Lemma 2.2, for every sequence λ = 
{λ(i) : i = 0, 1,..., k = k(λ)}, there is a pseudo-
metric dλ defined on X such that 1) {K > λ(i)} ⊆ 
{dλ < 2−i} ⊆ {K > λ(i − 1)} for each i = 1, 2,..., k; 

2) the function λ δ = 2−λ−1◦K, where λ−1 is 
the inverse of any increasing extension of λ(i) to 
the whole interval [0, k(λ)], is equivalent to the 
pseudo-metric dλ with constants that are 
uniform in λ. Specifically, d (x, y) ≤ 2d (x, y) < 4 
Ψλ(x, y). 
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Evidence. The sequence Ui = {K > λ(i)} from 
Lemma 2.2 fulfils Lemma 2.1's i) through iv). 
Therefore, 1) holds for any pseudo-metric dλ 
defined on X. To demonstrate 2), assume that 
(x, y) ∈ X × X and that dλ(x, y) > 0. Hence, we 
get 2−(i+1) ≤ dλ(x, y) < 2−i for some i = 0, 1,..., 
k(λ).․ ≤ − 

K(x, y) > λ(i 1) as seen by the second inclusion in 
1) and the condition dλ(x, y) < 2−i. K(x, y) = λ(i + 
1) is demonstrated by the inequality 2−(i+1) 
dλ(x, y) and the first inclusion in 1.  Since λ 
represents the inverse function of each strictly 
increasing extension of the sequence λ(i) for i = 
0,..., k to the interval [0, k], we can write: 
2−(i+1) ≤ dλ(x, y) < 2−i, and i − 1 < (λ−1 ⋦ 
K)(x, y) ≤ i + 1. 

 

It may be easily deduced from these 

inequalities that δλ = 2−λ−1◦K is equal to d.  
Actually, 

 

d (x, y)2(λ−1◦K)(x,y) ≤ 2−i2i+1 = 2. λ4 λ1 = 
2−(i+1)2i−1. 

 

 

Let us note that, regardless of the kernel K or 
the sequence λ, which fulfil Lemma 2.2, the 
function δλ in the preceding conclusion satisfies 
a triangle type inequality with triangular 
constant equal to 8. For every x, y, and z ∈ X, 
δλ(x, z) ≤ 4dλ(x, z) ≤ 4(dλ(x, y) + dλ(y, z)) < 
8(δλ(x, y) + δλ(y, z)). 

λ 

Considering the expansion of λ to generate the 
function λ−1, which is required to provide the 
quasi-metric δ explicitly, we can note that two 
extreme scenarios can be provided. Let λ−1 : 

[0, λ(k)] → [0, k] actually be defined as follows: 
λ−1(t) = i for λ(i − 1) < t ≤ λ(i) and i = 1,..., k. 
Furthermore, λ−1(0) = 0. A lower case λ−1: [0, 
λ(k)] → [0, k − 1] is another potential λ−1, and 
it is represented by λ−1(t) = i − 1 for λ(i − 1) < t 
≤ λ(i) for i = 1,..., k. 

It is also important to note that the scaling 
factor related to the selection of Λ in Lemma 
2.2 is not reflected in Frink's metric, and 
consequently, in δλ. The reason for this is that 
only values between zero and one are accepted 
by Frink's measure, dλ. Because δλ is equal to 
dλ, our quasi-metric δλ is likewise bounded. 

Additionally, a family of δλ balls that are 
directly defined as level sets of the affinity 
kernel K are contained in the sequence λ(i). 

 

 

r Proposition 2.1 states that the open λ ball 
with radious r and centre at x in X is given by 
for 0 < r < 1. 

 

y ∈ X: K(x, y) > λ(log2 1 )} is the result of Bδ𻠠{(x, 
r). 

 

Evidence.  The condition δλ(x, y) < r, which 
determines Bδ, is similar to K(x, y) > λ(log2 1 ). 

(x, r). 

 

r λ 

It is important to note that K alone will 
determine how the sequence λ(i) is really 
constructed. Therefore, K is the only one who 

can supply the 쌘 balls. 

 

• The Algorithm for the 

Explicit Computation of 

the Sequences λ. The 

Finite Case 
• We examine the scenario where X = {1, 2,..., 

n} for a large integer n in this section.  It is 

possible to think of the kernel K defined on X 

× X as a n × n symmetric matrix with positive 

entries Kij. Since Λ∞ ≥ min Kij > 0, hypothesis 

b) in Lemma 2.2 holds trivially because each 

Kij is positive. Alternatively, if Kii = supj Kij, 

then Lemma 2.2's hypothesis a) is true. 

• To build the sequences λ and δλ related to 

this matrix K, we will have to deal with the 

diagonal's neighbourhood composition in the 

algorithm. 

• Let {1, 2,..., n}2 = X × X consist of two subsets, 

U and V.  Then, for some j = 1, 2,..., n}, V ≦ U 

= {(i, k): (i, j) ∈ U and (j, k) ∈ V, as before. 

• Section 3.1. Set AU = (aij(U )) to represent the 

n × n rest matrix for a given U ⊆ {1, 2,..., n}n, 

which is defined by aij(U ) = 1 of (i, j) ∈ U and 

aij(U ) = 0 otherwise. The non-vanishing 

entries of the product matrix AU AV thus 

produce the set V ≦ U. Specifically 
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•  

• roof. Note that if and only if there exists k ∈ 

{1,..., n} such that akj(V) = 1 and aik(U) = 1, 

then ∑n}aik(U )akj(V ) ≥ 1. Stated differently, 

if and only if (i, k) ∈ U and (k, j) ∈ V, in the 

appropriate manner. 

• The following conclusion is significant 

because it illustrates the point at which the 

iterated composition of a diagonal 

neighbourhood eventually encompasses the 

entire space {1, 2,..., n}.2. 

• 2. 

• Lemma 3.1.  Assume that U is a set in {1, 2,..., 

n}2 that includes each of the three major 

diagonals of {1, 2,..., n}. For each i = 1, 2,..., n, 

precisely, (i, i − 1), (i, i) and (i, i + 1) belong to 

U. Next, let m be such that U (m) = {1, 2,..., 

n}.2. Evidence. We know that the matrix AU 

contains ones in at least the three major 

diagonals based on the representation of U in 

terms of the matrix AU and the current 

hypothesis in U.  Stated differently, ai,j >= 0, U 

ai,i = ai−1,i = ai,i+1 = 1. Then, at least in the 

entries of the five diagonals, A2 has positive 

values. 

• 1 1△ = {(i, i) : i = 1,..., n}, △+ = {(i, i + 1) : i = 

1,..., n − 1}, △− = {(i − 1, i) : i = 2,..., n}, 2 

2△+ = {(i, i + 2) : i = 1,..., n − 2} and △− = {(i 

− 2, i) : i = 3,..., n}.  An iteration of the 

previous reasoning demonstrates that U's 

composition widens around the diagonal and 

that the set {1,..., n}2 is fully covered after a 

finite number of compositions. 

• We are now prepared to outline the 

fundamental stages of an algorithm designed 

to identify a sequence λ(i) associated with the 

kernel K. 

•  

• algorithm. Let K = (Kij) be a positive-entry n × 

n symmetric matrix. 

•  

•  

• Step 1: Determine K's minimum value on 

each of the three major diagonals. 

Min{Ki−1,i; Ki,i; Ki,i+1: i = 1,..., n}, Λ0 

• Step 2: As in Proposition 3.1; 0 construct the 

matrix A0 = A{(i,j):Kij ≥Λ0}. 

• Step 3: Determine A3; 0 

• Step4: Define U0 as the subset of all (i, j) in 

{1,..., n}2 such that A3's (i, j) entry is positive; 

• Using the formula from Proposition 3.1, step 

5. Find Λ1 = max{α : {K ≥ α} ⊆ U0}; step 6. 

Create the matrix A1 = A{(i,j):Kij ≥Λ1}. 

• Step 7: Determine A3; 1 

• Phase 8: Establish U1 = {(i, j): the A3 entry (i, 

j) is positive}; 

• Step 9: Determine Λ2 = max{α : {K ≥ α} ⊆ 

U1};... The sequence Λ0, Λ1,..., Λk is obtained 

when the iteration terminates after a finite 

number of steps.  Λk < Λk−1 < · · · < Λ2 < Λ1 

is evident. In the absence of any further 

conditions on K, it is possible for Γ0 ≤ Λ1. 

However, we have Λk < Λk−1 \ · · · \~ \2 \ Λ1 

< Λ0 if Λ0 is greater than all of K's entries 

outside of the three main diagonals. 

• Proceed k + 1. Assign λ(i) = Λk−i for all i = 

0,..., k; Step k + 2. Determine an iteration of 

λ−1; λ 

• Proceed k + 3. Let δ (i, j) = 2−λ−1(Kij) be 

defined. 

•  

• For each i that is fixed and 0 < r < 1, plot the 

δλ balls Bδλ {(i, r) = {j : Kij > λ(log2 1 )}. 

•  

•  

• r 

• This is the Python script that implements this 

algorithm. 

•  

•  

•  

•  

• import numpy as np Listing 1: Python 

Algorithm 

•  

• m a tp lo t l ib import. connect networkx as nx 

import pyplot as p l t 

•  

• ## Value of n = n ## Calculate K's minimum 

Kmin= np. amin (K) 

• ## Determine Lambda 0: Lambda 0=0 

•  
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• ze ro s ((n )) for i in range (n−1 ): aux=np 

• Comparing the inner values of the major d 

iagonals and aux [i] equals min (K[i, i ],K[ i, i 

+1 ]). 

• ## Examine the residual values in the primary 

d iagonals aux [n-1]=K[n-1,n-1] lambda 0=min 

(auxiliary) 

•  

•  

•  

• The matrix A is defined as follows: A=np. ze ro 

s (( n, n )) 

•  

• When i and j are in the same range (n), their 

formulas are as follows: i f K[i, j ]>=lambda 0: 

A[i, j ]=1. 

•  

• ## CalculateB=(A. dot (A) ). dot (A) B=Aˆ3 

•  

• ## Calculate Bpos 

• Ze ro s ((n, n )) for i in range (n ): for j in range 

(n ): i f B[ i, j ] >=1: Bpos [ i, j ]=1 Bpos=np 

•  

• ## Calculate C = K * Bpos ##  Determine the 

lowest of the p o s i t i v e values of C 

auC=np.max(K) for i in range (n): regarding j 

in range (n): When C[i, j] >0, then auxC=min 

(auxC, C[i, j] ) lambda 1 equals auxC 

•  

• ## Indices ## Attributes 

•  

• ze ro s ((n )) lambda i [0 ] = lambda 0 lambda i 

[1 ] = lambda 1 lambda i=np 

•  

• ze ro s ((n, n, n )) = A i=np 

• I = A i [ 0, :, : ] 

•  

• ⦁i=np. ze ro s ((n, n, n )) B i [ 0, :, : ] =B 

•  

• Ze ro s ((n, n, n )) Bpos i=np 

• Bpos = Bpos i [ 0, :, : ] 

•  

• ⦁i=np. ze ro s ((n, n, n )) C i [ 0, :, : ] =C 

•  

• ## When h equals one 

•  

•  

• lambda i [h]>Kmin while: ## Define matrix A 

as follows for i in range (n): i f K[ i, j ]> for j in 

range (n).i [ h ] = lambda i: A i [ h, i, j ]=1 

•  

• ## Calculate I [ h, :, : ] = ( A i [ h, :, : ] ) B=Aˆ3. 

A i [ h, : , : ] ) ) ) dot. (A i [ h, :, : ] ) dot 

•  

• ## Bpos for i in range (n ): for j in range (n ): i f 

B i [ h, i, j ] >=1: Bpos i [ h, i, j ]=1 

•  

• ## Determine C C i [ h, :, : ] Bpos i =K∗ [ h, :, : ] 

• ## Determine the minimum of the p o s i t i v 

e values o f C with the formula 

auC=np.max(K) for i in range (n): for j in range 

(n): i f C i [ h, i, j ] >0: auC=min (auxC, C i [ h, i, 

j ] ) [h+1] lambda i = auxC h+=1 

•  

• ## Conclude whilst 

•  

• ## Moving Lambda Around 

• lambda I equals lambda I [0: h+1] [: : − 1 ] 

lambda i=lambda i 

• ## Reversing the function of  Lambda funct 

inv (t, lambd ) def lambda : 

• If t is less than zero, print (' t must to be less 

than or equal to the minimum value of 

lambda' ) 

• For each kk in the range (le n ( lambd ) −1 ), i 

f lambd [ kk]<=t\lambd [ kk + 1 ]: inv=kk+1 

• For any t>=lambd [le n ( lambd ) − 1 ], the 

formula is inv=le n ( lambd ) return inv. 

•  

• ## Calculate the matrix (nodo1, nodo2) def d 

i s t f r i n k i n v: 

• Finv =2∗∗(−lambda funct inv (K[ nodo1, 

nodo2 ], lambda i )) Dist Finv 

• return to this Finv 

•  

•  

•  

• d i s t a r r a y F i n v=np. ze ro s ((n, n )) for v 

in range (n ): for w in range (n ): d i s t a r r a y 

F i n v [ v, w]= d i s t f r i n k i n v ( v, w) 

•  

• Create the graph s t a r t i n g by using K G = 

nx. Graph () from numpy matrix (np. matrix 

(K)) to G = nx 
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•  

• Plot the graph layout as follows: ## nx.spr in g 

la yo u t (G) 

•  

• f i g u r e (p l t) 

• p l t. t i t l e (' Graph') n o d e c o lo r=np. ones 

( n) nx. draw (G, layout, n o d e c o lo r=no de 

co lo r, w i t h l a b e l s=False ) nx. draw ne 

two rkx labe ls (G, layout, f o n t s i z e =12, f o 

n t f a m i l y=' sans−s e r i f') p l t. show () 

•  

• ## Sketching b a l l s centred at i for k in range 

(n): for v in range (h+1): i f d i s t a r r a y F [ i ] 

[ k ] > lambda i [ v ]: n o d e c o lo r [ k]=h−v n 

o d e c o lo r [ i ]=h+1 

 

Test and Comparison with the 

Diffusive Metric for 

Newtonian Type Affinities 

The results in [10] suggest testing the algorithm 
on affinities defined as discretizations of 
Newtonian type potentials of the form 

α 

K (x, y) = 
1 

|x − y|α 

} 

{ 

for α positive. Once a discretization of Kα is 
given we may run our algorithm and also the 
well known diffusion metric introduced in [5]. 
See also [11]. Let us recall that the diffusive 
metric at time t > 0 is given by 

l 

 

where xl, νl, l = 1, . . . , L are the eigenvectors and 
the eigenvalues of the Laplace operator on the 
graph with affinity given by the metric Kij . 

 

We shall only write down the comparison of 
the families of δλ-balls, dt-balls and Euclidean 
balls for a couple of values of the radio, when 
we consider the discretization 

 
 

 

 

It is worthy pointing out at here that the choice 
of 60 points of discretization is only taken for 
the sake of getting better images for the 
graphs. In particular for the visibility of some 
edges. 

 

Fig. 1. Graph 

 
Let us also point out that in the following 
graphs, the numerical label of each vertex is 
assigned according to the order of the rows in 
the affinity matrix, but a priori has nothing to do 
with distance or affinity. 

 

Fig. 1 labels with the integers 0, 1, . . . , 59 the 60 
vertices of our graph. 

 

(D)  Y,   G,   0.11,   T,   0.135,   L,   0.31,   P, (F) Y, 

0.0169492, G, 0.037037, T, 0.111111, 

 
0.404327 

  
L, 0.333333, P, 
1 
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(E) Y, G, 1, T, 
3, L, 27, P, 59 

Fig. 2. Center 
at 50 

 
 

Now, for each of the three metrics—the Euclidean 
metric (E), the diffusive metric (D) with t = 0.005, and 
the Frink's metric—we will depict several balls with 
centres at 25 and 50. Since K is constructed in terms of 
the Euclidean (E), it is imperative to compare (D) and (F) 
with (E). Again, let us state that the form of the balls is 
what interests us, not the specific radii at which they are 
obtained. In this instance, where the Euclidean metric is 
unbounded, this point is very evident. Nevertheless, we 
will include the radii for each ball in each measure that 
are depicted. Actually, the annuli between two 
successive balls are depicted in various colours in the 
following photos. We utilise green for the first annulus, 
turquoise for the second, lavender for the third, and 
purple for the final annulus, with yellow serving as the 
centre. 
 
 
The colours are denoted in Figs. 2 and 3 by the capital 
letters Y, G, T, L, and P.  The inner and outer radii of each 
annulus are indicated by the letter and number 
sequences. 
 
It is important to note that the raddi sequence for (D) 
has been selected so that the dt balls approach 
Euclidean balls as closely as feasible. The metrization 
approach (F) described here appears to recreate, at least 
for this basic case of a kernel defined by a metric, the 
exact forms of the balls associated with the metric 
defining the kernel. One could argue that Frink's 
construction's exponential nature only yields a small 
number of the graph's balls. However, we know from the 
very proof of our primary result that we can obtain a 
profuse diversity of sequences λ(i) by just modifying the 
initial parameter Λ < Λ∞. The use of our affinity matrix 
K's main three diagonals is another somewhat 
discretionary algorithmic step. Restarting with the 
primary five diagonals will yield an additional family of 
annuli and F-balls.

 
(D) Y, G, 0.13, T, 0.17, L, 0.212, P, 0.404327 (F) Y, 0.0169492, G, 0.037037, T, 0.111111, 

 
L, 0.333333, P, 1 

(E) Y, G, 1, T, 3, L, 27, P, 59 

Fig. 3. Center at 25 
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